PHP

Dr K Chaitanya
Assistant Professor
Department of CSE

Dr YSR ANUCET

Acharya Nagarjuna University

PHP is an open-source, interpreted, and object-oriented scripting language that can be executed at the server-
side. PHP is well suited for web development. Therefore, it is used to develop web applications (an application
that executes on the server and generates the dynamic page.).

PHP is an acronym for "PHP: Hypertext Preprocessor"

PHP is a widely-used, open source scripting language

PHP scripts are executed on the server

PHP is free to download and use

PHP files can contain text, HTML, CSS, JavaScript, and PHP code

PHP code is executed on the server, and the result is returned to the browser as plain HTML
PHP files have extension “.php”

PHP can generate dynamic page content

PHP can collect form data

PHP can add, delete, modify data in your database

With PHP you are not limited to output HTML. You can output images or PDF files. You can also
output any text, such as XHTML and XML.

PHP is compatible with almost all servers used today.

PHP supports a wide range of databases

PHP is free. Download it from the official PHP resource: www.php.net

PHP supports several protocols such as HTTP, POP3, SNMP, LDAP, IMAP, and many more.

PHP can handle the forms, such as - collect the data from users using forms, save it into the database, and return
useful information to the user. For example - Registration form.

http://www.php.net/

Syntax
* Install WAMP software(windows + Apache server+PHP + My SQL)
* C:/wamp folder/www/new folder (php project)
 Save all files in this folder with .php extention
* Brackets is one editor for writing php programs.
* Open edge browser type localhost/new folder
* Ctrl + to increase the font size
e .(dot operator) is the concatenation operator
« echo statement is often used to output data to the screen.

[] second.php (php project) - Bracket

File Edit Find View MNavigate Debug Help

Working Files

eonone 1 <!DOCTYPE HTML>
27 <html>
php project 3 < b 0 d y >
first.php
secund::: hp 4 < ? p h p
5 echo " <hl>hello welcome</hl>";
6 7>
7 </body>
8 </html> @ PHPTutc| € PHPTut
&~ = O (i) localhost/php%20project/
O | © pHe x | w PHPSyn | PHPExar | Wampse | @) Index of /php pI'OJECt
&< O (i) localhost/php%20project/second.php Name Last modified Size Description
a Parent Directory -
hello welcome [P first.php 2023-04-06 09:26 7
@ second.php 2023-04-06 10:35 85

Apache/2.4.54 (Win64) PHP/8.0.26 mod fcgid/2.3.10-dev Server at localhost Port 80

variables

» Variables are "containers" for storing information.
Declaring PHP Variables:

« In PHP, a variable starts with the $ sign, followed by the name of the
variable.

Rules for PHP variables:

« a variable starts with the $ sign, followed by the name of the variable.
* A variable name must start with a letter or the underscore character
« A variable name cannot start with a number

« A variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and _)

« Variable names are case-sensitive

e echo "x value is : $x"."
": both are same
« echo "y value is: ".$y."
";

L]

File Edit Find View Mavigate

Working Files

second.php

varibles1.php

php project

first.php
second.php

vanblesl.php

Debug Help

coNOoO O b WNPE

varibles1.php (php project)

<?php

$x=10;

Sy=11.6;

Sname=""ravi';

echo "x value 1is : ".$x."
";
echo "y value 1is : ”.$y.”kbr>”;
echo "name 1s : ".$name;

7>

D | © PHF x | W PHPVar | PHPExar | - Wampse | ¢
<~ O (0 localhost/php%20project/varibles1.php

x valueis: 10
yvalueis: 11.6
name Is : ravi

Types of variables

global variables :

* if we declare the variables outside of the function is called global variables.
local variables :

* if we declare the variables inside the function is called local variables.

: : 1 <?ph
static variable: . 3 §x=5'
)
* if we declare the variables with static keyword. 3
4 function myTest(){
5 Sy=10;
G static $z=15;1
all Stack 7 }
|Time Memory Function Location
1| 00183 129392 {main}() " \variables2 php:0 8 myTest();
echo $x;
all Stack echo $y;
|Time Memory Function Location .
| 0.0183 129392} {main}() ... variables2.php:0 echo $Z ’

7>

(-

<?php
$X=5;

<

function myTest(){
Sy=10;
echo Sy."
";
static $z=15;| 1 155
echo $z."
";

}

" O OO ~NOUSWN

B

Comments in PHP
* PHP Single Line Comments
* There are two ways to use single line comments in PHP.
o /| (C++ style single line comment)
* # (Unix Shell style single line comment)
 PHP Multi Line Comments
* In PHP, we can comments multiple lines also. To do so, we need to

enclose all lines within /* */. <?php
},l’:k'
<2php Anything placed

. . : within comment
// this is C++ style single line comment

. . . . will not be displayed
this is Unix Shell style single line comment

on the browser;
*/

echo "Welcome to PHP multi line comment”;

echo "Welcome to PHP single line comments"”;

7>

7>

w N - °

N —

o=

Data types in PHP

PHP Data Types

!’:S)I?P data types are used to hold different types of data or values. PHP supports 8 primitive data types that can be categorized further in
ypes:

. Scalar Types (predefined)
. Compound Types (user-defined)
. Special Types

PHP Data Types: Scalar Types

It holds only single value. There are 4 scalar data types in PHP.
boolean

integer

float

string

PHP Data Types: Compound Types

It can hold multiple values. There are 2 compound data types in PHP.

. array
. object

PHP Data Types: Special Types
There are 2 special data types in PHP.

. resource
. NULL

https://www.javatpoint.com/php-data-types#boolean
https://www.javatpoint.com/php-data-types#integer
https://www.javatpoint.com/php-data-types#float
https://www.javatpoint.com/php-data-types#string
https://www.javatpoint.com/php-data-types#array
https://www.javatpoint.com/php-data-types#object
https://www.javatpoint.com/php-data-types#resource
https://www.javatpoint.com/php-data-types#NULL

Booleans are the simplest data type works like switch. It holds only two values: TRUE (1) or FALSE (0). It is often
used with conditional statements. If the condition is correct, it returns TRUE otherwise FALSE.

1.<?php
2. if (TRUE)
3. echo "This condition is TRUE.";
4. if (FALSE)
5. echo "This condition is FALSE.";
6.7>

PHP Integer

Integer means numeric data with a negative or positive sign. It holds only whole numbers, i.e., numbers without
fractional part or decimal points.

Rules for integer:

*An integer can be either positive or negative.

*An integer must not contain decimal point.

*Integer can be decimal (base 10), octal (base 8), or hexadecimal (base 16).

*The range of an integer must be lie between 2,147,483,648 and 2,147,483,647 i.e., -2"31 to 2"31.

<?php
$dec1 = 34;
$oct1 = 0243;

$hexal = 0x45;

echo "Decimal number: " .$dec1. "</br>";

echo "Octal number: " .$oct1. "</br>";

echo "HexaDecimal number: " .$hexa1. "</br>";

ONDOR N =

-~
\Y

PHP Float
A floating-point number is a number with a decimal point. Unlike integer, it can hold numbers with a fractional or
decimal point, including a negative or positive sign.

1.<?php

2. $n1=19.34;

3. $n2=54.472;

4. $sum =3%n1 + $n2;

5. echo "Addition of floating numbers: " .$sum;

6.7>

PHP String

A string is a non-numeric data type. It holds letters or any alphabets, numbers, and even special characters.
String values must be enclosed either within single quotes or in double quotes. But both are treated differently.

1.<?php

2. $company = “PHP";

3. //both single and double quote statements will treat diff
erent

4. echo "Hello $company";
5. echo "</br>";

6. echo 'Hello $company’;
7.7>

Output:

Hello PHP

Hello $company

PHP Array

An array is a compound data type. It can store multiple values of same data type in a single variable.
1.<?php

2. $bikes = array ("Royal Enfield", "Yamaha", "KTM");

3. var_dump($bikes); //the var_dump() function returns

the datatype and values

4. echo "</br>";

5. echo "Array Element1: $bikes[0] </br>";

6. echo "Array Element2: $bikes[1] </br>";

7. echo "Array Element3: $bikes[2] </br>";
8.7>

Output:

array(3) { [@]=> string(13) "Royal Enfield" [1]=> string(6) "Yamaha" [2]=> string(3) "KTM" }

Array Elementl: Royal Enfield
Array Element2: Yamaha
Array Element3: KTM

PHP object
Objects are the instances of user-defined classes that can store both values and functions. They must be explicitly

Aarlarad

<?php Output:

class bike {
function model() {

Bike Model: Royal Enfield
$model_name = "Royal Enfield";

echo "Bike Model: " .$model_name;

}

}

$obj = new bike();

$obj -> model();
7>
PHP Resource
Resources are not the exact data type in PHP. Basically, these are used to store some function calls or references
to external PHP resources. For example - a database call. It is an external resource.
PHP Null
Null is a special data type that has only one value: NULL. There is a convention of writing it in capital letters as it is
case sensitive. 1.<?php

2. $nl =NULL;

3. echo $nl; //it will not give any output
4.?7>

constants

 PHP constants are name or identifier that can't be changed during the execution of the script except
for magic constants, which are not really constants. PHP constants can be defined by 2 ways:

1.Using define() function:

define(name, value, case-insensitive)
1.name: It specifies the constant name.
2.value: It specifies the constant value.

3.case-insensitive: Specifies whether a constant is case-insensitive. Default value is false. It means it is
case sensitive by default.

1 <?php
=7php 2 define("MIN",35);
define("MESSAGE","Hello PHP"); 3 echo MIN."
";
define(*A",10); 4
echo MESSAGE; 2 MIN=MIN+5;

6 echo MIN;
e 7 &>

2. Using const keyword
constants are automatically global throughout the script.
Ex: const A=20;

https://www.javatpoint.com/php-magic-constants
https://www.javatpoint.com/php-magic-constants
https://www.javatpoint.com/php-magic-constants

Magic constants

« Magic constants are the predefined constants in PHP which get changed on the basis of their use.
They start with double underscore (__) and ends with double underscore.

« Magic constants are case-insensitive.

 There are nine magic constants in PHP. In which eight magic constants start and end with double
underscores ().

LINE : It returns the current line number of the file, where this constant is used.

echo "You are at line number". _LINE__ . "

",

FILE _: This magic constant returns the full path of the executed (file.
echo __FILE__ . "

"; (include file name also)

DIR_: It returns the full directory path of the executed file.(exclude file name).
echo DIR . "

"; echo dirname(__FILE_). "

"; both are same.

FUNCTION__: This magic constant returns the function name, where this constant is used. It will
return blank if 1t is used outside of any function.

echo 'The function nameis'. _ FUNCTION . "

";
CLASS __: It returns the class name, where this magic constant is used.
TRAIT __: similar to single inheritance. This magic constant returns the trait name, where it is used.
METHOD __: It returns the name of the class method where this magic constant is included.
NAMESPACE : It returns the current namespace where it is used.

ClassName::class : This magic constant does not start and end with the double underscore (_). It
returns the fully qualified name of the ClassName.

https://www.javatpoint.com/php-magic-constants#LINE
https://www.javatpoint.com/php-magic-constants#FILE
https://www.javatpoint.com/php-magic-constants#DIR
https://www.javatpoint.com/php-magic-constants#FUNCTION
https://www.javatpoint.com/php-magic-constants#CLASS
https://www.javatpoint.com/php-magic-constants#TRAIT
https://www.javatpoint.com/php-magic-constants#METHOD
https://www.javatpoint.com/php-magic-constants#NAMESPACE
https://www.javatpoint.com/php-magic-constants#ClassName
https://www.javatpoint.com/php-magic-constants#ClassName
https://www.javatpoint.com/php-magic-constants#ClassName

Operators

 PHP Operator is a symbol i.e used to perform operations on operands. In simple
words, operators are used to perform operations on variables or values.

 PHP Operators can be categorized in following forms:
 Arithmetic Operators

« Assignment Operators

» Bitwise Operators

« Comparison Operators

 Incrementing/Decrementing Operators

* Logical Operators

 String Operators

« Array Operators

« Spaceship Operator

. \évfe can also categorize operators on behalf of operands. They can be categorized in
orms:

« Unary Operators: works on single operands such as ++, -- etc.
« Binary Operators: works on two operands such as binary +, -, *, / etc.
* Ternary Operators: works on three operands such as "?:".

https://www.javatpoint.com/php-operators#Arithmetic
https://www.javatpoint.com/php-operators#Arithmetic
https://www.javatpoint.com/php-operators#Arithmetic
https://www.javatpoint.com/php-operators#Assignment
https://www.javatpoint.com/php-operators#Assignment
https://www.javatpoint.com/php-operators#Assignment
https://www.javatpoint.com/php-operators#Bitwise
https://www.javatpoint.com/php-operators#Bitwise
https://www.javatpoint.com/php-operators#Bitwise
https://www.javatpoint.com/php-operators#Comparison
https://www.javatpoint.com/php-operators#Comparison
https://www.javatpoint.com/php-operators#Comparison
https://www.javatpoint.com/php-operators#Incrementing
https://www.javatpoint.com/php-operators#Incrementing
https://www.javatpoint.com/php-operators#Incrementing
https://www.javatpoint.com/php-operators#Logical
https://www.javatpoint.com/php-operators#Logical
https://www.javatpoint.com/php-operators#Logical
https://www.javatpoint.com/php-operators#String
https://www.javatpoint.com/php-operators#String
https://www.javatpoint.com/php-operators#String
https://www.javatpoint.com/php-operators#Array
https://www.javatpoint.com/php-operators#Array
https://www.javatpoint.com/php-operators#Array

Arithmetic Operators

The PHP arithmetic operators are used to perform common arithmetic operations such as addition, subtraction, etc.

with numeric values.

+ Addition $a + $b Sum of operands

- Subtraction $a - $b Difference of operands

* Multiplication $a * Sb Product of operands

/ Division $a/$b Quotient of operands

% Modulus $a % $b Remainder of operands
e Exponentiation $a ** $b $a raised to the power $b

The exponentiation (**) operator has been introduced in PHP 5.6.

<?php
$x
$y = 4;
echo($x
echo($x
echo($x
echo($x
echo($x

10;

$y); //
$y); //
$y); //
$y); //
$y); //

Butputs:
Butputs:
Butputs:
Butputs:
Butputs:

14

40
L

Assignment Operators

The assignment operators are used to assign value to different variables. The basic assignment operator is "=".

Operator

b

Name

Assign

Add then Assign
Subtract then Assign
Multiply then Assign

Divide then Assign
(quotient)

Divide then Assign

(remainder)

Example

$a =%b

$a += $b

$a -=$b

$a *= $b

$a /= $b

$a %= $b

Explanation

The value of right operand is assigned to the left operand.
Addition same as $a = $a + $b

Subtraction same as $a = $a - $b

Multiplication same as $a = $a * $b

Find quotient same as $a = $a/ $b

Find remainder same as $a = $a % $b

$x = 28;
$x += 30;

echo $x; // Outputs:

50

Bitwise Operators

The bitwise operators are used to perform bit-level operations on operands. These operators allow the evaluation

and manipulation of specific bits within the integer.

Operator Name Example Explanation

& And $a & $b Bits that are 1 in both $a and $b are set to 1, otherwise 0.
| Or (Inclusive or) $a| $b Bits that are 1 in either $a or $b are set to 1

A Xor (Exclusive or) $a ™ $b Bits that are 1 in either $a or $b are set to 0.

~ Not ~%a Bits that are 1 set to 0 and bits that are 0 are set to 1

<< Shift left $a << $b Left shift the bits of operand $a $b steps

>> Shift right $a >> $b Right shift the bits of $a operand by $b number of places

Operator

<>

Name

Equal

Identical

Not identical

Not equal

Not equal

Less than

Greater than

Less than or equal to

Greater than or equal

to

Spaceship

Comparison operators

Example
$a==$b
T ==
$b
$al==$b
$a!l=$b
$a <> $b
$a < $b
$a > $b
$a <= $b
$a >=$b
$a <=>%b

Explanation

Return TRUE if $a is equal to $b

Return TRUE if $a is equal to $b, and they are of same data
type

Return TRUE if $a is not equal to $b, and they are not of same
data type

Return TRUE if $a is not equal to $b
Return TRUE if $a is not equal to $b
Return TRUE if $a is less than $b

Return TRUE if $a is greater than $b
Return TRUE if $a is less than or equal $b

Return TRUE if $a is greater than or equal $b

Return -1 if $a is less than $b
Return 0 if $a is equal $b
Return 1 if $a is greater than $b

O 00 ~ oo »nn B w N 2

N
w N RO

The var_dump() function dumps information about one or more variables. The information holds

type and value of the variable(s).

<?php

$x = 25;
$y = 35;
$z = "25";

var_dump($x
var_dump($x
var_dump($x
var_dump ($x
var_dump($x
var_dump($x
var_dump($x
var_dump ($x

?>

== $z); //
=== $z); //
= $y); //
l== $2); //
< $y); //
> $y); //
<= $y); [/
>= $y); //

<IDOCTYPE html>
<html>
<body>

<?php
$a = 32;
echo var _dump($a) . "
";

$b = "Hello world!";

echo var _dump($b) . "
";
$c = 32.5;
echo var dump($c) . "
";
Outputs: boolean true —dump($c)
Outputs: boolean false $d = array("red”, "green”, "blue");
echo var _dump($d) . "
";
Outputs: boolean true
) $e = array(32, “"Hello world!", 32.5, array("red", “"green", "blue"));
Outputs: boolean true echo var dump($e) . "<brs>";
Outputs: boolean true
// Dump two variables
Qutputs: boolean false echo var dump($a, $b) . "
";
Outputs: boolean true >
Outputs: boolean false </body>
</html>
int(32)
string(12) "Hello world!"
float(32.5)

array(3) { [0]== string(3) "red" [1]== string(5) "green" [2]== string(4) "blue" }
array(4) { [0]== int(32) [1]== string(12) "Hello world!" [2]=> float(32.5) [3]== array(3) { [0]== string(3) "red"
int(32) string(12) "Hello world!"

Incrementing/Decrementing Operators

The increment and decrement operators are used to increase and decrease the value of a variable.

++ Increment ++3%a Increment the value of $a by one, then return $a
$a++ Return $a, then increment the value of $a by one

-~ decrement --$a Decrement the value of $a by one, then return $a
$a-- Return $a, then decrement the value of $a by one

PHP Logical Operators

The logical operators are typically used to combine conditional statements.

Operator Name Example Result

and And $x and $y True if both $x and $y are true

or Or $x or $y True if either $x or $y is true

xor Xor $x xor 3%y True if either $x or $y is true, but not both
&& And $x && %y True if both $x and $y are true

| Or $x || $y True if either $x or $y is true

! Not I$x True if $x is not true

<?php

$year = 2014;

// Leap years are divisible by 4@ or by 4 but not 1ee

if(($year % 400 == 0) || (($year % 100 != B) && ($year % 4 == 8))){
echo "$year is a leap year.";

T else{
echo "$year is not a leap year.";

W o0 ~ o 1 b w MNP

String Operators

The string operators are used to perform the operation on strings. There are two string operators in PHP, which are

given below:

Concatenation $a.%b Concatenate both $a and $b
= Concatenation and $a.=$b First concatenate $a and $b, then assign the concatenated
Assignment string to $a, e.g. $a = $a. $b

<?php

$x = "Hello";

$y = " World!";

echo $x . $y; // Outputs: Hello World!

0 ~I o w1 B w N

$x .= %y;
echo $x; // Outputs: Hello World!
2>

Array Operators

The array operators are used in case of array. Basically, these operators are used to compare the values of arrays.

=
=

7>

== $y);
=== $y);
= $y);
<> $y);
== $y);

+ Union $a + Sy Union of $a and $b

== Equality $a==$%b Return TRUE if $a and $b have same key/value pair

I= Inequality $al=$b Return TRUE if $a is not equal to $b

=== Identity $a === Return TRUE if $a and $b have same key/value pair of same type in

$b same order
I== Non- $al==$b | Return TRUE if $a is not identical to $b
Identity

<> Inequality $a <> $b Return TRUE if $a is not equal to $b
1 <?php
2 | $x = array("a"
3 | $y = array("u"
4 $z =
5 | var_dump(%$z);
6 | var_dump($x
7 | var_dump($x
8 | var_dump($x
9 | var_dump($x
10 | var_dump($x

$x + $y; // Union of $x and

// Outputs:
// Outputs:
// Outputs:
// Outputs:
// Outputs:

=> IlRedllJ llbll => "GPEE"“J

$y

boolean
boolean
boolean
boolean
boolean

C

=> "Yellow", "v" => "Orange",

=> "Blue");

llwll => lIPinkIl);

false

false

true

true

true

PHP Spaceship Operator

PHP 7 introduces a new spaceship operator (<=>) which can be used for comparing two expressions.

It is also known as combined comparison operator.

The spaceship operator returns e if both operands are equal, 1 if the left is greater, and -1 if the

right is greater.

1 <?php

2 // Comparing Integers

3 | echo 1 <=> 1; // Outputs: ©

4 | echo 1 <=> 2; // Outputs: -1

5 | echo 2 <=> 1; // Outputs: 1

6

7 | // Comparing Floats

8 | echo 1.5 <=> 1.5; // Outputs: ©
9 | echo 1.5 <=> 2.5; // Outputs: -1
10 | echo 2.5 <=> 1.5; // Outputs: 1
11

12 | // Comparing Strings

13 | echo "x" <=> "x"; // Outputs: @
14 | echo "x" <=> "y"; // Outputs: -1
15 echo "y" <=> "x"; // Outputs: 1
16 P>

Conditional statements
 PHP If Else

* PHP if else statement is used to test condition. There are various ways to
use if statement in PHP.

<7php
. $marks=69;
¢ Lf Example if ($marks <33){
- <?php echo "fail’;
. if-else)
> h $num =1 2: else if ($marks>=34 && $marks<50) {
. . SR echo "D grade”;
° IT- - if($num%2==0){ Jracen
. . echo "$num is even number"; else if ($marks>=50 && $marks <65) {
¢ n eSted If If{$num < 100){ }EISE{ echo "C grade”;
}

echo "$num is less than 100"; .
echo "$num is odd number"; else if ($marks>=65 && $marks<80) {

} echo "B grade”;

} }

?
> else if ($marks>=80 && $marks<90) {

7>
echo "A grade”;
}
Output: else if ($marks>=90 &8& $marks<100) {
Output: echo "A+ grade”;

}
- else {
12 1s less than 1e@ e
12 is even number echo "Invalid input”;

https://www.javatpoint.com/php-if-else#if
https://www.javatpoint.com/php-if-else#if-else
https://www.javatpoint.com/php-if-else#if-else
https://www.javatpoint.com/php-if-else#if-else
https://www.javatpoint.com/php-if-else#if-else-if
https://www.javatpoint.com/php-if-else#if-else-if
https://www.javatpoint.com/php-if-else#if-else-if
https://www.javatpoint.com/php-if-else#if-else-if
https://www.javatpoint.com/php-if-else#if-else-if
https://www.javatpoint.com/php-if-else#nested-if
https://www.javatpoint.com/php-if-else#nested-if
https://www.javatpoint.com/php-if-else#nested-if

Example <?php

<?php
$num=20; $ch="U;
<?php switchiS Aol switch ($ch)
bage = 23; case 10: {
$nationality = “Indian”; echo("number is equals to 10"); TR EE

//applying conditions on nationality and age break: echo "Given character is vowel;

if ($nationality == "Indian") case 20 break;
{ echo("number is equal to 20"); case €.
if ($age >= 18) { break: echo "Given character is vowel";
echo "Eligible to give vote”; case 30: break;
} echo("number is equal to 30"); case 'i"
else { break; echo "Given character is vowel”;
echo "Not eligible to give vote"; default: break;
} echo("number is not equal to 10, 20 or 30"); case O
) } echo "Given character is vowel";
7> 7> break;
case U’
Outout: echo "Given character is vowel”;
Output: utput
break;
case ‘A"

Eligible to give vote Bumper: 33 eqaa’ tka 26

echo "Given character is vowel";

<?php <?php
$ch = "B.Tech™; $n=1:

_ <?php
:‘w'tch ($ch) for(§n=1:$n<=1(9! <?php " - “
“ echo "$n
" echo "$n
"; $season=array{ summer”,"winter”,"spring”,"autumn®);
case "BCA": } $n++: foreach($season as $arr){
O S R s , lwhile($n<=10); echo "Season is: $arr
™
break; -z ?s }
case "Bsc™: 7>
echo "Bsc is 3 years course”; Output:
break;
case "B.Tech™: 1
echo "B.Tech is 4 years course”; [P} 1
break; 3 2 Season is: summer
case "B.Arch™ 4 3 Season is: winter
echo "B.Arch is 5 years course”; 3 - Season i spring
break; 6 > Season 1 autumn
default: 7 °
echo "Wrong Choice"; 8 7
break; 9 8
} 10 ?

1e

Expressions

Almost everything in a PHP script is an expression. Anything that has a value is an expression. In
a typical assignment statement ($x=100), a literal value, a function or operands processed by
operators is an expression, anything that appears to the right of assignment operator (=)

Syntax

$x=100; //100 is an expression

$a=%$b+%c; //b+$c is an expression
$c=add(%$a,$b); //add($a,$b) is an expresson
$val=sqrt(10e); //sqrt(100) is an expression

$var=%x!=%y; //$x!=%y is an expression

PHP String

* PHP string is a sequence of characters i.e., used to store and manipulate
text. PHP supports only 256-character set. There are 4 ways to specify a
string literal in PHP.

1.single quoted

2.double quoted

3.heredoc syntax

4.newdoc syntax (since PHP 5.3)
Single Quoted

* \We can create a string in PHP by enclosing the text in a single-quote. It is
the easiest way to specify string in PHP.

* For specifying a literal single quote, escape it with a backslash (\) and to
specify a literal backslash (\) use double backslash (\\). All the other
iInstances with backslash such as \r or \n, will be output same as they
specified instead of having any special meaning.

<?php

$str="Hello text within single quote’; .
Hello text within single quote

echo $str;

?>

<7?php
$str1="Hello text

multiple line
Hello text multiple line text within single quoted string

text within single quoted string’;
2 - Using double "quote" directly inside single quoted string

$str2="Using double "quote” directly inside single quoted string’;

Using escape sequences \n in single quoted string

$str3="Using escape sequences \n in single quoted string’;
echo "$str1
 $str2
 $str3™:

>

<?php

$num1=10;

$str1="trying variable $num1’;

$str2="trying backslash n and backslash t inside single quoted string \n \t’;

$str3="Using single quote \'my quote\' and \\backslash’; trying variable $numi

echo "$str1
 $str2
 $str3”; trying backslash n and backslash t inside single quoted string \n \t

i Using single quote 'my quote' and \backslash

Double Quoted
In PHP, we can specify string through enclosing text within double quote also. But escape sequences and variables
will be interpreted using double quote PHP strings.

<?php

$str="Hello text within double quote”; Hello text within double quote

echo $str;

7>

<?php
$str1="Hello text Hello text multiple line text within double quoted string

multiple line Using double "quote" with backslash inside double quoted string

Using escape sequences in double quoted string

text within double quoted string”;
$str2="Using double \"quote\" with backslash inside double quoted string";
$str3="Using escape sequences \n in double quoted string";

echo "$str1
 $str2
 $str3":

7>

<?php
$num1=10;

echo "Number is: $num1”; Number 1is: 1@

7>

Heredoc

Heredoc syntax (<<<) is the third way to delimit strings. In Heredoc syntax, an identifier is provided after this
heredoc << < operator, and immediately a new line is started to write any text. To close the quotation, the string

follows itself and then again that same identifier is provided. That closing identifier must begin from the new line

without any whitespace or tab.

Naming Rules

The identifier should follow the naming rule that it must contain only alphanumeric characters and underscores,

and must start with an underscore or a non-digit character.

<?php
$str = <<<Demo
It is a valid example

, _ _ _ o - It is a valid example
Demo; //Valid code as whitespace or tab is not valid before closing identifier

echo $str;

?>

We cannot use any whitespace or tab before and after the identifier and semicolon, which means identifier must

not be indented. The identifier must begin from the new line.

<?php
$str = <<<Demo
It is Invalid example
Demo; //Invalid code as whitespace or tab is not valid before closing identifier
echo $str;

7>

Parse error: syntax error, unexpected end of file in C:\xampp\htdocs\xampp\PMA\heredoc.php on line 7

Heredoc is similar to the double-quoted string, without the double quote, means that quote in a heredoc are not
required. It can also print the variable's value.
<?php

$city = 'Delhi’;

$str = << <DEMO

Hello! My name is Misthi, and | live in $city. Hello! My name is Misthi, and I live in Delhi.

DEMO;
echo $str;

7>

Newdoc

Newdoc is similar to the heredoc, but in newdoc parsing is not done. It is also identified with three less than
symbols <<< followed by an identifier. But here identifier is enclosed in single-quote, e.g. <<<'EXP'. Newdoc

follows the same rule as heredocs.

The difference between newdoc and heredoc is that - Newdoc is a single-quoted string whereas heredoc is a

double-quoted string.

<?php

echo <<<'EOD'

Example of string spanning multiple lines

using nowdoc syntax. Backslashes are always treated literally,
e.g. \\ and \'.

EOD;

Example of string spanning multiple lines
using nowdoc syntax. Backslashes are always treated literally,

e.g. \\ and \".

String functions in PHP

PHP strtolower() function: The strtolower() function returns string in lowercase letter.
string strtolower (string $string)

PHP strtoupper() function: The strtoupper() function returns string in uppercase letter.
string strtoupper (string $string)

PHP ucfirst() function: The ucfirst() function returns string converting first character into uppercase. It
doesn't change the case of other characters.
string ucfirst (string $str)

PHP Icfirst() function: The Icfirst() function returns string converting first character into lowercase. It
doesn’t change the case of other characters.

string Icfirst (string $str)
PHP ucwords() function: The ucwords() function returns string converting first character of each word
into uppercase.

string ucwords (string $str)
PHP strrev() function: The strrev() function returns reversed string.

string strrev (string $string)
PHP strlen() function: The strlen() function returns length of the string.

int strlen (string $string)

PHP bin2hex() Function: PHP bin2hex() function is used to convert string value of ASSCII characters to
hexadecimal value.

$str ="Hello";

echo "
"."By using 'bin2hex()' Method your hexadecimal value is: ".bin2hex($str);

48656c6c6f

PHP string Itrim() function: PHP string Itrim() function is predefined function. It is often used to
remove whitespace from both sides of a string or other character from the left side
of a string.

PHP string md5() function: PHP string md5() is predefined function. It is used to calculate the MD5 hash of a
string. It uses the RSA DATA security. It returns the hash as a 32 character hexadecimal
Wﬁbﬁﬁng md5_file() Function: PHP string md5_file() function is in-built important function. It is used to calculate
the MD5 hash of a file. It uses the RSA Data Security. It returns the md5 hash on
success, or FALSE on failure.

PHP string md5_file() Function: PHP string md5_file() function is in-built important function. It is used to calculate
the MDS5 hash of a file. It uses the RSA Data Security. It returns the md5 hash on
success, or FALSE on failure.

PHP String substr_replace() Function:The substr_replace is an in-built function of PHP, which replaces a part of the
string with another text within a string.

PHP Arrays

PHP array is an ordered map (contains value on the basis of key). It is used to hold multiple values of similar type in
a single variable.

PHP Array Types:

There are 3 types of array in PHP.

1.Indexed Array

2.Associative Array

3.Multidimensional Array

PHP Indexed Array

PHP index is represented by number which starts from 0. We can store number, string and object in the PHP array.

All PHP array elements are assigned to an index number by default.

There are two ways to define indexed array:

$season=array("summer","winter","spring","autumn");

echo "Season are: $season[0], $season[1], $season[2] and $season[3]";
OR

1.$season[0]="summer";

2.$season[1]="winter";

3.$season[2]="spring";

4.$season[3]="autumn";

echo "Season are: $season[0], $season[1], $season[2] and $season[3]";

Traversing PHP Indexed Array:

We can easily traverse array in PHP using foreach loop. Let's see a simple example to traverse all the elements of
PHP array.

1.<?php

2.3size=array("Big","Medium","Short");

3.foreach($size as $s)

44

5. echo "Size is: $s
";

6.}

7.7?7>

Length of PHP Indexed Array:

PHP provides count() function which returns length of an array.
1.$size=array("Big","Medium","Short");

2.echo count($size);

PHP array_reverse() function:

PHP array_reverse() function returns an array containing elements in reversed order.
1.$season=array("summer","winter","spring","autumn");
2.%reverseseason=array_reverse($season);

PHP sort() function
PHP sort() function sorts all the elements in an array.
1.$season=array("summer","winter","spring","autumn");

PHP array_search() function

PHP array _search() function searches the specified value in an array. It returns key or index if search is
successful.

1.$season=array("summer","winter","spring","autumn");

2.%key=array_search("spring",$season);

PHP array_intersect() function

PHP array intersect() function returns the intersection of two array. In other words, it returns the matching
elements of two array.

1.$name1=array("sonoo","john","vivek","smith");

2.$name2=array("umesh","sonoo","kumar","smith");
3.$name3=array_intersect($name1,$name2);

PHP array chunk() function
PHP array chunk() function splits array into chunks. By using array chunk() method, you can divide array into
many parts.

‘ >"250000","Ratan"=>"200000");

Array (

[0] => Array ([©] => 556ee@ [1] => 25eeee)
[1] => Array ([@] => 200000)

)

PHP Associative Array:
We can associate name with each array elements in PHP using => symbol.
There are two ways to define associative array:
$salary=array("Sonoo"=>"350000","John"=>"450000","Kranti"=>"200000");
1.echo "Sonoo salary: ".$salary["Sonoo"]."
";
2.echo "John salary: ".$salary["John"]."
";
3.echo "Kartik salary: ".$salary["Kranti"]."
";
OR
1.$salary["Sonoo"]="350000";
2.$salary["John"]="450000";
3.$salary["Kranti"]="200000";

Traversing PHP Associative Array:

By the help of PHP for each loop, we can easily traverse the elements of PHP associative array.
1.$salary=array("Sonoo"=>"550000","Vimal"=>"250000","Ratan"=>"200000");
2.foreach($salary as $k => $v)

3.4

4.echo "Key: ".$k." Value: ".$v."
";

5.}

PHP Multidimensional Array
PHP multidimensional array is also known as array of arrays. It allows you to store tabular data in an array. PHP
multidimensional array can be represented in the form of matrix which is represented by row * column.

1.<?php

2.%9emp = array

(
array(1,"sonoo",400000),
array(2,"john",500000),
array(3,"rahul",300000)

);

O NOOA W

] 1 sonoo 400000

9.for ($row = 0; $row < 3; Srow++) { 2 john 5@eeee
10. for ($col = 0; $col < 3; $col++) { 3 rahul 300000
11. echo $emp[$row][$col]." ";
12.)

13. echo "
";

14.)

15.7>

PHP Functions

 PHP function is a piece of code that can be reused many times. It can take
input as argument list and return value. There are thousands of built-in
functions in PHP.

PHP User-defined Functions

* We can declare and call user-defined functions easily. Let's see the syntax to
declare user-defined functions.

function functionname(){
//code to be executed

}

<?php

function sayHello(){

echo "Hello PHP Function";

}

sayHello();//calling function
7>

PHP Function Arguments
We can pass the information in PHP function through arguments which is separated by comma.
PHP supports Call by Value (default), Call by Reference, Default argument values and Variable-length

arniimant lict

<?php <?php
function sayHello($name){ function sayHello($name, $age){

echo "Hello $name
" €cho "Hello $name, you are $age years old
";
} }

sayHello("Sonoo",27);

sayHello("Vimal”,29);

sayHello("Sonoo");

sayHello("Vimal");

sayHello(*John"); sayHello("John",23);
Output: Jutput

Hello Sonoo Hello Sonoo, you are 27 years old

Hello Vimal Hello Vimal, you are 29 years old

Hello John Hello John, you are 23 years old

PHP Call By Reference

Value passed to the function doesn't modify the actual value by default (call by value). But we can do so by passinc

value as a reference.

By default, value passed to the function is call by value. To pass value as a reference, you need to use ampersanc

(&) symbol before the argument name.
Let's see a simple example of call by reference in PHP.

File: functionref.php

<?php
function adder(&$str2)

{
$str2 .= 'Call By Reference’;

}
$str = 'Hello
adder($str); ‘

echo $str;

7>

PHP Function: Default Argument Value

We can specify a default argument value in function. While calling PHP function if you don't specify any argument

it will take the default argument. Let's see a simple example of using default argument value in PHP function.

File: functiondefaultarg.php

<?php

function sayHello($name="Sonoo"){
echo "Hello $name
";

}

sayHello("Rajesh");
sayHello();//passing no value

sayHello("John");

Hello Rajesh

Hello Sonoo

Hello John

PHP Math

PHP provides many predefined math constants and functions that can be used to perform mathematical operations.

abs() :

The abs() function returns absolute value of given number. It returns an integer value but if you pass floating point
value, it returns a float value.

echo (abs(-7)."
"); /I 7 (integer)

ceil() :
The ceil() function rounds fractions up.
echo (ceil(7.333)."
");// 8

floor() :
The floor() function rounds fractions down.
echo (floor(7.333)."
");// 7

sqrt() :
The sqrt() function returns square root of given argument.
1.echo (sqrt(7)."
");// 2.6457513110646

decbin() function

The decbin() function converts decimal number into binary. It returns binary number as a string.
acrhn (dAdachin(22) "<hr/>")// 10110

dechex() :
The dechex() function converts decimal number into hexadecimal. It returns hexadecimal representation of given

number as a string.
echo (dechex(22)."
");// 16

decoct() :
The decoct() function converts decimal number into octal. It returns octal representation of given number as a string.
echo (decoct(22)."
");// 26

base convert() :

The base_convert() function allows you to convert any base number to any base number. For example, you can
convert hexadecimal number to binary, hexadecimal to octal, binary to octal, octal to hexadecimal, binary to decimal
etc.

echo (base_convert($n1,10,2)."
");// 1010

bindec() :

The bindec() function converts binary number into

decimal.

echo (bindec(1011)."
");// 11

PHP Form Handling

We can create and use forms in PHP. To get form data, we need to use PHP super globals $ GET and $ POST.
The form request may be get or post. To retrieve data from get request, we need to use $ GET, for post request
$ POST.

PHP Get Form
Get request is the default form request. The data passed through get request is visible on the URL browser so it is

not secured. You can send limited amount of data through get request.
File: form1.html

<form action="welcome.php” method="get">
Name: <input type="text" name="name"/>
<input type="submit" value="visit"/>

</form>

File: welcome.php

<?php
$name=$_GET["'name"];//receiving name field value in $name variable
echo "Welcome, $name”;

7>

PHP Post Form

Post request is widely used to submit form that have large amount of data such as file upload, image upload, login

form, registration form etc.

The data passed through post request is not visible on the URL browser so it is secured. You can send large amount

of data through post request_ File: form1.html

<form action="login.php" method="post">

<table>

<tr><td>Name:</td><td> <input type="text" name="name"/> </td> </tr>
<tr><td>Password:</td> <td> <input type="password" name="password"/> </td> </tr>
<tr><td colspan="2"><input type="submit" value="login"/> </td></tr>

</table>

</form>

File: login.php

<?php
$name=$_POST["name"];//receiving name field value in $name variable

$password=$_POST["password"];//receiving password field value in $password variable

echo "Welcome: $name, your password is: $password”;

7>

What is Validation ?

Validation means check the input submitted by the user. There are two types of validation are
available in PHP. They are as follows -

' Client-Side Validation - Validation is performed on the client machine web browsers.

' Server Side Validation - After submitted by data, The data has sent to a server and perform
validation checks in server machine.

Form Validation in PHP

An HTML form contains various input fields such as text box, checkbox, radio buttons, submit button, and checklist,
etc. These input fields need to be validated, which ensures that the user has entered information in all the required

fields and also validates that the information provided by the user is valid and correct.

There is no guarantee that the information provided by the user is always correct. PHP validates the data at the

server-side, which is submitted by HTML form. You need to validate a few things:

1. Empty String

2. Validate String

3. Validate Numbers
4. Validate Email

5. Validate URL

6. Input length

Empty String:
If the user leaves the required field empty, it will show an error message.

if (empty([“name”])) {

$nameErr = "Name is required”;
} else {

$name = test input(["name™]);
¥

Validate String

$name = $_POST ["Name"];
if (!preg_match ("/*[a-zA-z]*$/", $name)) {
$ErrMsg = "Only alphabets and whitespace are allowed.”;
echo $ErrMsg;
} else {

echo $name;

Validate Number
$mobileno = $_POST ["Mobile no"];
if (!preg_match ("/*[0-9]*$/", $mobileno)){
$ErrMsg = "Only numeric value is allowed.”;
echo $ErrMsg;
} else {

echo $mobileno;

}
Validate Email

$email = $_POST ["Email"];
$pattern = "A[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-Z]{2,3})$ " ";
if (\preg_match ($pattern, $email)){
$ErrMsg = "Email is not valid.";
echo $ErrMsg;
} else {

echo "Your valid email address is: * .$email;

Input Length Validation

$mobileno = ($_POST ["Mobile"]);
$length = strlen ($mobileno);

if ($length < 10 && $length > 10) {
$ErrMsg = "Mobile must have 10 digits.";
echo $ErrMsg;
} else {

echo "Your Mobile number is: " .$mobileno;

}
Button Click Validate

if (isset ($_POST['submit’]) {
echo "Submit button is clicked.”;
if ($_SERVER["REQUEST_METHOD"] == "POST") {
echo "Data is sent using POST method *;
}

} else {

echo "Data is not submitted";

Create and validate a Registration form
Create a registration form using HTML and perform server-side validation using PHP.

<IDOCTYPE html>
<html>

<head>

<style>

.error {color: #FF0001;}
</style>

</head>

<body>

<?php
// define variables to empty values

$namekErr = $emailErr = $mobilenoErr = $genderkrr = $websiteErr = $agreekErr = "*;

$name = $email = $mobileno = $gender = $website = $agree = "*;

https://www.javatpoint.com/html-tutorial

//Input fields validation
if ($_SERVER["REQUEST_METHOD"] == "POST") {

//String Validation
if (emptyempty($_POST["name"])) {
$nameErr = "Name is required”;
} else {
$name = input_data($_POST["name"]);
// check if name only contains letters and whitespace

if (\preg_match("/*[a-zA-Z]*$/",$name)) {

$nameErr = "Only alphabets and white space are allowed";

}
//Email Validation

if (emptyempty($_POST["email"])) {
$emailErr = "Email is required”;
} else {
$email = input_data($_POST["email"]);
// check that the e-mail address is well-formed
if (filter_var($email, FILTER_VALIDATE_EMAIL)) {

$emailErr = "Invalid email format™;

//Number Validation
if (emptyempty($_POST["mobileno™])) {
$mobilenoErr = "Mobile no is required”;
} else {
$mobileno = input_data($_POST["mobileno"]);
// check if mobile no is well-formed
if (\preg_match ("/~[0-9]*$/", $mobileno)) {
$mobilenoErr = "Only numeric value is allowed.";
}
//check mobile no length should not be less and greator than 10
if (strlen ($mobileno) = 10) {
$mobilenoErr = "Mobile no must contain 10 digits.”;
}

}
//URL Validation

if (emptyempty($_POST["website"])) {
$website = "

} else {

$website = input_data($_POST["website"]);

// check if URL address syntax is valid

if (!preg_match("Ab(?:(?:https?|ftp):\/V|www\.)[-a-z0-9+ & @#\/%?=~_|!:,.;]*[-a-z
9+ &@#\/%=~_|]/i",$website)) {
$websiteErr = "Invalid URL";

//Empty Field Validation

if (emptyempty ($_POST["gender"])) {
$genderErr = "Gender is required”;

} else {

$gender = input_data($_POST["gender"]);

//Checkbox Validation
if (lisset($_POST['agree'])){

$agreeErr = "Accept terms of services before submit.”;
} else {

$agree = input_data($_POST["agree"]);

}
function input_data($data) {

$data = trim($data);
$data = stripslashes($data);
$data = htmlspecialchars($data);

return $data;

}

7>

<h2>Registration Form</h2> Gender:

* required field <input type="radio” name="gender" value="male"> Male

e <input type="radio” name="gender" value="female"> Female

<form method="post" action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]); ?>" > <input type="radio” name="gender" value="other"> Other

Name: * <?php echo $genderkrr; ?>

:

<input type="text" name="name"> ' '

Agree to Terms of Service:
* <?php echo $namekrr; ?> J

<input type="checkbox" name="agree">

 put typ g

_ * <?php echo $agreekrr; ?>

E-mail:

- :

<input type="text" name="email"> _ _ _)
<input type="submit” name="submit" value="Submit">

* <?php echo $emailkrr; ?>

Mobile No:

</form>

<input type="text" name="mobileno">

* <?php echo $mobilenockrr; ?>

Website:

<input type="text" name="website">

<?php echo $websiteErr; ?>

<?php
if(isset($_POST['submit)) {
if(SnameErr == "" && $emailErr == "" && $mobilenoErr == " && $genderErr == "" && $websiteErr == " && $agree
Err==""){
echo "<h3 color = #FF0001> You have sucessfully registered. </h3>";
echo "<h2>Your Input:</h2>";
echo "Name: " .$name;

echo "
";
echo "Email: " .$email;
echo "
":
echo "Mobile No: " .$mobileno;
echo "
":
echo "Website: " .$website;
echo "
";
echo "Gender: " .$gender;
} else {
echo "<h3> You didn't filled up the form correctly. </h3>";
}
}
7>
</body>

</html|>

localhost/program/registration. X +
& : g

< C 0O @ localhost/program/reg

i Apps JP httpy//192.168.254...

The validation rules for the form above are as follows:

Registration Form

Field Validation Rules
* required field
Name Required. + Must only contain letters and whitespace
Name:) E-mail Required. + Must contain a valid email address (with @ and .)
E-mail- e Website Optional. If present, it must contain a valid URL
) Comment Optional. Multi-line input field (textarea)
Mobile No: ¥
Gender Required. Must select one
Website:

Gender: Male Female Other *

Agree to Terms of Service: »

Submit _

PHP isset() function

The isset() function is a built-in function of PHP, which is used to determine that a variable is set or not. If a variable

Is considered set, means the variable is declared and has a different value from the NULL. In short, it checks that the

variable is declared and not null.

This function returns true if the variable is not null, otherwise it returns false. Note that the null character ("\0") is

considered different from the PHP NULL constant.

PHP preg match() function

The preg_match() function is a built-in function of PHP that performs a regular expression match. This function

searches the string for pattern, and returns true if the pattern exists otherwise returns false.

Generally, the searching starts from the beginning of $subject string parameter. The optional parameter $offset is

used to start the search from the specified position.

PHP Include and Require

PHP allows us to create various elements and functions, which are used several times in many pages. It takes much
time to script these functions in multiple pages. Therefore, use the concept of file inclusion that helps to include

files in various programs and saves the effort of writing code multiple times.

"PHP allows you to include file so that a page content can be reused many times. It is very helpful to include files
when you want to apply the same HTML or PHP code to multiple pages of a website." There are two ways to

include file in PHP.

1. include

2. require
Both include and require are identical to each other, except failure.

o include only generates a warning, i.e,, E_ZWARNING, and continue the execution of the script.

o require generates a fatal error, i.e,, E_COMPILE_ERROR, and stop the execution of the script.

Advantage

Code Reusability: By the help of include and require construct, we can reuse HTML code or PHP script in many PHP

scripts.

